Two Functions With One Continuous at Zero Whose Sum is Continuous at Zero
Given an array arr[] of length N, find the length of the longest sub-array with a sum equal to 0.
Examples:
Input: arr[] = {15, -2, 2, -8, 1, 7, 10, 23}
Output: 5
Explanation: The longest sub-array with elements summing up-to 0 is {-2, 2, -8, 1, 7}Input: arr[] = {1, 2, 3}
Output: 0
Explanation: There is no subarray with 0 sumInput: arr[] = {1, 0, 3}
Output: 1
Explanation: The longest sub-array with elements summing up-to 0 is {0}
Naive Approach: Follow the steps below to solve the problem using this approach:
- Consider all sub-arrays one by one and check the sum of every sub-array.
- If the sum of the current subarray is equal to zero then update the maximum length accordingly
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using
namespace
std;
int
maxLen(
int
arr[],
int
N)
{
int
max_len = 0;
for
(
int
i = 0; i < N; i++) {
int
curr_sum = 0;
for
(
int
j = i; j < N; j++) {
curr_sum += arr[j];
if
(curr_sum == 0)
max_len = max(max_len, j - i + 1);
}
}
return
max_len;
}
int
main()
{
int
arr[] = {15, -2, 2, -8, 1, 7, 10, 23};
int
N =
sizeof
(arr) /
sizeof
(arr[0]);
cout <<
"Length of the longest 0 sum subarray is "
<< maxLen(arr, N);
return
0;
}
Java
class
GFG {
static
int
maxLen(
int
arr[],
int
N)
{
int
max_len =
0
;
for
(
int
i =
0
; i < N; i++) {
int
curr_sum =
0
;
for
(
int
j = i; j < N; j++) {
curr_sum += arr[j];
if
(curr_sum ==
0
)
max_len = Math.max(max_len, j - i +
1
);
}
}
return
max_len;
}
public
static
void
main(String args[])
{
int
arr[] = {
15
, -
2
,
2
, -
8
,
1
,
7
,
10
,
23
};
int
N = arr.length;
System.out.println(
"Length of the longest 0 sum "
+
"subarray is "
+ maxLen(arr, N));
}
}
Python3
def
maxLen(arr):
max_len
=
0
for
i
in
range
(
len
(arr)):
curr_sum
=
0
for
j
in
range
(i,
len
(arr)):
curr_sum
+
=
arr[j]
if
curr_sum
=
=
0
:
max_len
=
max
(max_len, j
-
i
+
1
)
return
max_len
if
__name__
=
=
"__main__"
:
arr
=
[
15
,
-
2
,
2
,
-
8
,
1
,
7
,
10
,
13
]
print
(
"Length of the longest 0 sum subarray is % d"
%
maxLen(arr))
C#
using
System;
class
GFG {
static
int
maxLen(
int
[] arr,
int
N)
{
int
max_len = 0;
for
(
int
i = 0; i < N; i++) {
int
curr_sum = 0;
for
(
int
j = i; j < N; j++) {
curr_sum += arr[j];
if
(curr_sum == 0)
max_len = Math.Max(max_len,
j - i + 1);
}
}
return
max_len;
}
static
public
void
Main()
{
int
[] arr = {15, -2, 2, -8,
1, 7, 10, 23};
int
N = arr.Length;
Console.WriteLine(
"Length of the longest 0 sum "
+
"subarray is "
+ maxLen(arr, N));
}
}
PHP
<?php
function
maxLen(
$arr
,
$N
)
{
$max_len
= 0;
for
(
$i
= 0;
$i
<
$N
;
$i
++)
{
$curr_sum
= 0;
for
(
$j
=
$i
;
$j
<
$N
;
$j
++)
{
$curr_sum
+=
$arr
[
$j
];
if
(
$curr_sum
== 0)
$max_len
= max(
$max_len
,
$j
-
$i
+ 1);
}
}
return
$max_len
;
}
$arr
=
array
(15, -2, 2, -8,
1, 7, 10, 23);
$N
= sizeof(
$arr
);
echo
"Length of the longest 0 "
.
"sum subarray is "
,
maxLen(
$arr
,
$N
);
?>
Javascript
<script>
function
maxLen(arr, N)
{
let max_len = 0;
for
(let i = 0; i < N; i++) {
let curr_sum = 0;
for
(let j = i; j < N; j++) {
curr_sum += arr[j];
if
(curr_sum == 0)
max_len = Math.max(max_len, j - i + 1);
}
}
return
max_len;
}
let arr = [15, -2, 2, -8, 1, 7, 10, 23];
let N = arr.length;
document.write(
"Length of the longest 0 sum "
+
"subarray is "
+ maxLen(arr, N));
</script>
Output
Length of the longest 0 sum subarray is 5
Time Complexity: O(N2)
Auxiliary Space: O(1)
Find the length of the largest subarray with 0 sum using hashmap:
Follow the below idea to solve the problem using this approach:
Let us say prefixsum of array till index i is represented as Si .
Now consider two indices i and j (j > i) such that Si = Sj .So,
Si = arr[0] + arr[1] + . . . + arr[i]
Sj = arr[0] + arr[1] + . . . + arr[i] + arr[i+1] + . . . + arr[j]Now if we subtract Si from Sj .
Sj – Si = (arr[0] + arr[1] + . . . + arr[i] + arr[i+1] + . . . + arr[j]) – (arr[0] + arr[1] + . . . + arr[i])
0 = (arr[0] – arr[0]) + (arr[1] – arr[1]) + . . . + (arr[i] – arr[i]) + arr[i+1] + arr[i+2] + . . . + arr[j]
0 = arr[i+1] + arr[i+2] + . . . + arr[j]So we can see if there are two indices i and j (j > i) for which the prefix sum are same then the subarray from i+1 to j has sum = 0.
We can use hashmap to store the prefix sum, and if we reach any index for which there is already a prefix with same sum, we will find a subarray with sum as 0. Compare the length of that subarray with the current longest subarray and update the maximum value accordingly.
Follow the steps mentioned below to implement the approach:
- Create a variable (sum), length (max_len), and a hash map (hm) to store the sum-index pair as a key-value pair.
- Traverse the input array and for every index,
- Update the value of sum = sum + array[i].
- Check every index, if the current sum is present in the hash map or not.
- If present, update the value of max_len to a maximum difference of two indices (current index and index in the hash-map) and max_len.
- Else, put the value (sum) in the hash map, with the index as a key-value pair.
- Print the maximum length (max_len).
Below is a dry run of the above approach:
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using
namespace
std;
int
maxLen(
int
arr[],
int
N)
{
unordered_map<
int
,
int
> presum;
int
sum = 0;
int
max_len = 0;
for
(
int
i = 0; i < N; i++) {
sum += arr[i];
if
(arr[i] == 0 && max_len == 0)
max_len = 1;
if
(sum == 0)
max_len = i + 1;
if
(presum.find(sum) != presum.end()) {
max_len = max(max_len, i - presum[sum]);
}
else
{
presum[sum] = i;
}
}
return
max_len;
}
int
main()
{
int
arr[] = { 15, -2, 2, -8, 1, 7, 10, 23 };
int
N =
sizeof
(arr) /
sizeof
(arr[0]);
cout <<
"Length of the longest 0 sum subarray is "
<< maxLen(arr, N);
return
0;
}
Java
import
java.util.HashMap;
class
MaxLenZeroSumSub {
static
int
maxLen(
int
arr[])
{
HashMap<Integer, Integer> hM
=
new
HashMap<Integer, Integer>();
int
sum =
0
;
int
max_len =
0
;
for
(
int
i =
0
; i < arr.length; i++) {
sum += arr[i];
if
(arr[i] ==
0
&& max_len ==
0
)
max_len =
1
;
if
(sum ==
0
)
max_len = i +
1
;
Integer prev_i = hM.get(sum);
if
(prev_i !=
null
)
max_len = Math.max(max_len, i - prev_i);
else
hM.put(sum, i);
}
return
max_len;
}
public
static
void
main(String arg[])
{
int
arr[] = {
15
, -
2
,
2
, -
8
,
1
,
7
,
10
,
23
};
System.out.println(
"Length of the longest 0 sum subarray is "
+ maxLen(arr));
}
}
Python3
def
maxLen(arr):
hash_map
=
{}
max_len
=
0
curr_sum
=
0
for
i
in
range
(
len
(arr)):
curr_sum
+
=
arr[i]
if
arr[i]
=
=
0
and
max_len
=
=
0
:
max_len
=
1
if
curr_sum
=
=
0
:
max_len
=
i
+
1
if
curr_sum
in
hash_map:
max_len
=
max
(max_len, i
-
hash_map[curr_sum])
else
:
hash_map[curr_sum]
=
i
return
max_len
if
__name__
=
=
"__main__"
:
arr
=
[
15
,
-
2
,
2
,
-
8
,
1
,
7
,
10
,
13
]
print
(
"Length of the longest 0 sum subarray is % d"
%
maxLen(arr))
C#
using
System;
using
System.Collections.Generic;
public
class
MaxLenZeroSumSub {
static
int
maxLen(
int
[] arr)
{
Dictionary<
int
,
int
> hM
=
new
Dictionary<
int
,
int
>();
int
sum = 0;
int
max_len = 0;
for
(
int
i = 0; i < arr.GetLength(0); i++) {
sum += arr[i];
if
(arr[i] == 0 && max_len == 0)
max_len = 1;
if
(sum == 0)
max_len = i + 1;
int
prev_i = 0;
if
(hM.ContainsKey(sum)) {
prev_i = hM[sum];
}
if
(hM.ContainsKey(sum))
max_len = Math.Max(max_len, i - prev_i);
else
{
if
(hM.ContainsKey(sum))
hM.Remove(sum);
hM.Add(sum, i);
}
}
return
max_len;
}
public
static
void
Main()
{
int
[] arr = { 15, -2, 2, -8, 1, 7, 10, 23 };
Console.WriteLine(
"Length of the longest 0 sum subarray is "
+ maxLen(arr));
}
}
Javascript
<script>
function
maxLen(arr)
{
let hM =
new
Map();
let sum = 0;
let max_len = 0;
for
(let i = 0; i < arr.length; i++) {
sum += arr[i];
if
(arr[i] == 0 && max_len == 0)
max_len = 1;
if
(sum == 0)
max_len = i + 1;
let prev_i = hM.get(sum);
if
(prev_i !=
null
)
max_len = Math.max(max_len, i - prev_i);
else
hM.set(sum, i);
}
return
max_len;
}
let arr = [15, -2, 2, -8, 1, 7, 10, 23];
document.write(
"Length of the longest 0 sum subarray is "
+ maxLen(arr));
</script>
Output
Length of the longest 0 sum subarray is 5
Time Complexity: O(N)
Auxiliary Space: O(N)
Source: https://www.geeksforgeeks.org/find-the-largest-subarray-with-0-sum/
0 Response to "Two Functions With One Continuous at Zero Whose Sum is Continuous at Zero"
Post a Comment